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Strong Southern Ocean carbon uptake evident in
airborne observations
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The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO2), yet
estimates of air-sea CO2 flux for the region diverge widely. In this study, we constrained Southern Ocean
air-sea CO2 exchange by relating fluxes to horizontal and vertical CO2 gradients in atmospheric transport
models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based
measurements of the vertical atmospheric CO2 gradient provide robust flux constraints. We found
an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during
the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and
surface-ocean partial pressure of CO2 (PCO2)–based products, but our data indicate stronger annual
mean uptake than suggested by recent interpretations of profiling float observations.

O
cean water-column carbon inventories
suggest that the SouthernOceanaccounts
for more than 40% of the cumulative
global ocean uptake of anthropogenic
CO2 (1, 2). However, estimates of con-

temporary net Southern Ocean air-sea carbon
fluxes based on surface-ocean partial pressure
of CO2 (PCO2) observations or atmospheric in-
versions remain highly uncertain (3–8). Recent
interpretations of profiling float observations
have introduced further complications, pro-
posing a profound revision of the Southern
Ocean carbon budget, with reduced summer-
time uptake and larger wintertime outgassing
(9, 10). Given the SouthernOcean’s critical role

as a sink for anthropogenic CO2, as well as
indications that regional fluxes vary subs-
tantially on decadal time scales (7, 11, 12), it is
essential to develop more-robust constraints
on Southern Ocean air-sea CO2 exchange.
Observations of atmospheric CO2 provide an
opportunity for doing so, as the atmosphere
effectively integrates flux signals over large
surface regions. Atmospheric inversion mod-
els provide a formal statistical method to es-
timate fluxes that optimally satisfy atmospheric
observational constraints, given circulation
simulated by data-constrained atmospheric
transport models (4, 13, 14). However, global-
scale atmospheric inversion models have not
converged on consistent Southern Ocean fluxes,
as they suffer from inaccuracies in the simu-
lated transport, reliance on uncertain “prior”
flux estimates, and requirements tomeet tighter
constraints elsewhere in the world, where sig-
nals are stronger and measurements less sparse
(4, 13–17).
In this study, we derived “emergent con-

straints” on regional air-sea fluxes by relating
fluxes in a collection of models to observable
gradients in CO2 in the atmosphere directly
overlying the Southern Ocean. We used ob-
servations from nine deployments of three
recent aircraft projects: the HIAPER Pole-to-
Pole Observations (HIPPO) project (18), the
O2/N2 Ratio and CO2 Airborne Southern Ocean
(ORCAS) study (19), and the Atmospheric
Tomography (ATom) mission (20) (see sup-
plementary materials, hereafter SM). We also
examined 44 atmospheric CO2 records from
surface monitoring stations in the high-latitude
Southern Hemisphere, selecting and filtering
the highest-quality data (SM). Collectively, these
observations show a distinct pattern in the
seasonal variability of atmospheric CO2 overly-
ing the Southern Ocean, most notably charac-

terized by lower-troposphere CO2 depletion in
austral summer and neutral to weakly positive
enhancement in austral winter (Figs. 1 and
2, A to C). To isolate CO2 gradients driven by
Southern Ocean fluxes, we examined CO2

anomalies relative to a local reference, using
potential temperature (q) to delineate boun-
daries in the vertical dimension (SM).Wedefined
a metric quantifying the vertical CO2 gradient,
DqCO2, as the difference between the median
value of CO2 observed south of 45°S, where
q < 280 K, and that in the mid- to upper-
troposphere, where 295 K < q < 305 K. The
aircraft observations suggest that the ampli-
tude of seasonal variation in CO2 is minimized
within this upper q range relative to the rest of
the column (fig. S7); it is also above the vertical
extent of wintertime, near-surface homogeneity
(Fig. 2A) and below altitudes substantially
influenced by the stratosphere, making it a
good reference for detecting regional air-sea
flux signals (see SM). Similarly, we defined a
metric of the horizontal surface gradient,
DyCO2, as the difference between CO2 aver-
aged across stations in the core latitudes of
summertime CO2 drawdown (Fig. 1, C and D,
shaded region) and that at the South Pole Ob-
servatory (SPO). DqCO2 is strongly negative in
the austral summer, followed by near-neutral
conditions in the austral winter through spring
(Fig. 2B). Correspondingly, DyCO2 also indi-
cates summertime drawdown at the surface
andweakly positive to near-neutral conditions
in winter (Fig. 2C), although the amplitude
of seasonal variation in DqCO2 is more than
three times larger than that in DyCO2. Var-
iation in drawdown intensity across stations
contributing to DyCO2 likely reflects differen-
tial sampling of air exposed to strong ocean
productivity signals (fig. S4).
We developed inferences about air-sea CO2

fluxes from these gradient metrics by exam-
ining a collection of atmospheric inversemodels
that simulate time-varying, three-dimensional
CO2 fields sampled to replicate observations
(SM). The inverse models demonstrate that
seasonality in DqCO2 and DyCO2 is dominated
by Southern Ocean air-sea fluxes. Although
land and fossil fuel fluxes are small south of
45°S, extraregional contributions do influence
local gradients via transport from the north.
The models explicitly simulate CO2 tracers
responsive only to ocean (CO2

ocn), land (CO2
lnd),

and fossil fuel (CO2
ff) fluxes and subject to

identical transport fields. The simulations of
these tracers indicate that the influence of land
fluxes generally opposes the effect of fossil fuel
emissions for both gradient metrics, and the
seasonality in the land and fossil fuel tracers
is much weaker than the ocean-derived signal
(Fig. 2, D and E, and fig. S6). The negative
vertical (positive horizontal) gradient in fossil
fuel CO2 is consistent with elevated CO2 con-
centrations in the equatorward portion of the
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domain, particularly at high altitude (Fig. 1, A
and B, and figs. S2 to S4). Ancillary measure-
ments of methane-mixing ratios confirm that
this feature reflects long-range transport of
emission signals from land, but that it has
little influence on DqCO2 (figs. S6 and S8).
Additional evidence that fossil fuel emissions
make only small contributions to the annual
mean and seasonality in DyCO2 comes from
ancillary observations of sulfur hexafluoride—
which provides an analog for fossil fuel CO2

(21) and shows very little spatial or temporal
structure over the Southern Ocean (fig. S9).
To develop quantitative flux estimates, we

related simulated DqCO2
ocn and DyCO2

ocn to
regionally integrated, temporally averaged air-
sea flux in each modeling system (Fig. 3). In
addition to inversemodels, we included forward
atmospheric transport integrations forced with
spatially explicit surface-ocean PCO2-based flux
datasets (SM). Ultimately, each model realiza-
tion was a forward simulation producing three-
dimensional CO2 fields from which we com-
puted gradient metrics consistent with the
model’s surface fluxes and atmospheric tran-

sport. The relationship between the fluxes
and simulated gradient metrics across the
collection of models enabled using the ob-
served gradients to constrain Southern Ocean
fluxes. We assumed that the relevant surface-
influence region can be approximated as the
area south of a particular latitude and focused
on fluxes integrated over the region south of
45°S, noting that the flux products indicate
strongmeridional gradients and seasonality in
the zonal mean fluxes south of 30°S (fig. S18,
A and B). We averaged the regional fluxes
over individual seasons to regress against the
surface mole fraction observations and over
90 days before each aircraft campaign (see SM
for sensitivity tests, including an assessment
of different region boundaries and a similar
analysis based on gradients in total CO2). There
is a robust relationship between the CO2 flux
south of 45°S and DqCO2

ocn across the models
(Fig. 3, A and B). The sensitivity of DqCO2

ocn

to fluxes varies seasonally, as indicated by a
change in slope between seasons. December to
February (DJF) is distinct in having a smaller
slope (higher sensitivity); the other seasons

individually have larger slopes that are similar
to each other, thus we grouped data from
campaigns flown inMarch toNovember together
(Fig. 3B). For the surface data, we find a signif-
icant positive relationship between the regional
air-sea flux and DyCO2 in DJF across the models
(Fig. 3C); the flux-DyCO2 relationship dwindles
in strength during nonsummer months, how-
ever, and there is no significant relationship
in austral winter [June to August (JJA)] (Fig.
3D). The spread enabling these relationships
results from the diversity of flux estimates,
while the scatter about the fits represents
both different realizations of atmospheric
transport and spatiotemporal mismatch be-
tween the true surface influence function
and our coarse spatiotemporal approximation.
The smaller slope for the aircraft data inDJF is
consistent with greater atmospheric stability
(reduced vertical mixing) over the cold ocean
during austral summer, intensifying the flux
signal in the lower troposphere; more-energetic
vertical mixing in other seasons, as well as
stronger horizontal flow, results in diminished
sensitivity in DqCO2 and no clear relationship
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Fig. 1. Observed patterns in atmospheric CO2 over the Southern Ocean.
(A and B) Cross sections observed by aircraft during (A) ORCAS, in January to
February 2016, and (B) ATom-1, in August 2016. Colors show the observed CO2

dry air mole fraction relative to the average observed within the 295–305 K
potential temperature range south of 45°S on each campaign. Contour lines show
the observed potential temperature. See figs. S1 and S2 for flight tracks and
cross-sectional plots for all campaigns, and figs. S3 and S4 for simulated fields.

(C and D) Compilation of mean CO2 observed at surface monitoring stations
minus the National Oceanic and Atmospheric Administration (NOAA) in situ
record at the South Pole Observatory (SPO) during the period 1999–2019 for (C)
summer (DJF) and (D) winter (JJA). The black line is a spline fit provided simply
as a visual guide. Blue shading denotes the latitude band in which we designate
“Southern Ocean stations.” See table S1 and fig. S5 for station locations and
temporal coverage. SM includes additional methodological details.
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between fluxes and the surface station–based
DyCO2 metric in winter.
Vertical lines in Fig. 3 show representative

observations of each gradient metric cor-
rected for land and fossil fuel contributions;
the intersection of these lines with the flux-
gradient fit provides a quantitative flux estimate.
Applying this emergent constraint for each
aircraft campaign yields 10 flux estimates
spread over 7 months of the year; these data
suggest that the Southern Ocean is a strong
sink for CO2 in austral summer, with fluxes
that are near-neutral during winter (Fig. 4A).
Applying a two-harmonic fit to the data, we
estimated an annual mean flux spread over
the aircraft observing period (2009–2018)
of –0.53 ± 0.23 petagrams of carbon (Pg C)
year–1 (Fig. 4B). The seasonal cycle of fluxes
estimated from aircraft campaigns largely
agrees with flux estimates derived from the
Surface Ocean CO2 Atlas (SOCAT) PCO2 data
product, using either neural network interpo-
lation (22) or the Jena mixed-layer scheme (23)
(Fig. 4A). Similarly, the aircraft-based fluxes
agree with the multimodel mean of inverse
estimates, although inversions tend to under-
estimate summer uptake (fig. S12C), over-

estimate winter uptake (fig. S12D), and show
greater than 100% disagreement on the annual
mean flux. We have not explicitly accounted
for interannual variability or trends in the
fluxes over the period of aircraft data col-
lection (fig. S12, C and D), although we expect
this to be a relatively small effect, as seasonal
coverage between HIPPO and ATom is rela-
tively uniform (Fig. 4A). The flux estimates
obtained from the surface atmospheric CO2

gradient in summer are consistent with the
aircraft-based estimates (fig. S12C) but have
larger uncertainty—indeed, the magnitude of
the DyCO2 signal is small relative to analytical
uncertainty (SM), a particular challenge in
this region, where sites are remote, conditions
are harsh, and intercomparison between the
multiple laboratoriesmaintaining CO2 records
is limited (24, 25). Despite the large uncertainty,
however, trends in DyCO2 are consistent with
increasing Southern Ocean uptake since 2005
(7, 26) (see SM); for instance, DyCO2 declined
by about 0.16 ± 0.03 parts per million (ppm)
decade−1 over the period 2005–2019 for both
DJF and JJA, and while there was no signi-
ficant flux-gradient relationship in JJA (Fig. 3D),
the associated DyCO2 -based flux estimates sug-

gest the DJF flux was –0.5 ± 0.7 Pg C year–1 from
2005 to 2009, –1.1 ± 0.9 Pg C year–1 from 2010
to 2014, and −1.3 ± 1.1 Pg C year–1 from 2015
to 2019 (fig. S12C). Notably, the aircraft-based
flux estimates indicate stronger annual mean
uptake than fluxes incorporating PCO2 estimates
from the Southern Ocean Carbon and Climate
Observations and Modeling (SOCCOM) pro-
filing float pH measurements (10, 27). The
primary SOCCOM flux product we examined
(SOCAT+SOCCOM) is derived from neural net-
work interpolation including both ship-based
surface-oceanPCO2 observations aswell as float-
derived PCO2 estimates [see SM and (27)]; this
product yields weaker annual mean uptake but
tracks the individual aircraft campaign flux
estimates within uncertainty (Fig. 4A). The
other two SOCCOM-based products presented
here are sensitivity runs (10, 27) that selectively
exclude ship-based PCO2 observations in the
SouthernOcean (see SM).While these products
have a seasonal phase and amplitude sim-
ilar to those of the aircraft flux estimates,
they indicate greater outgassing in winter
and less ingassing during summer than the
aircraft-based fluxes (Fig. 4). Such large fluxes
should have clear atmospheric signatures
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Fig. 2. Seasonal evolution of atmospheric CO2 over the Southern
Ocean. (A) Vertical profiles of CO2 observations collected by aircraft south of
45°S, binned on 5 K potential temperature (q) bins and averaged by season
(whiskers show standard deviation; fig. S6 shows model comparison). MAM,
austral fall (March to May); SON, austral spring (September to November).
(B) The vertical gradient (DqCO2) in CO2 measured from aircraft south of 45°S.
Small points show DqCO2 for individual profiles; larger points show the median
and standard deviation (whiskers) for each flight. The black line shows a
two-harmonic fit to the flight-median points. (C) Monthly climatology

(1999–2019) of the latitudinal gradient in CO2 measured by surface stations
(Fig. 1); the black line shows the station mean metric (DyCO2). Separate
laboratory records at Syowa Station (SYO) and Palmer Station (PSA)
have been averaged. The seasonal evolution of (D) DqCO2 and (E) DyCO2

simulated in a collection of atmospheric inversion models (table S3). The
points show the median across the models, and whiskers show the standard
deviation. The colors correspond to the total CO2 (black) and CO2 tracers
responsive to only ocean (blue), land (green), and fossil (red) surface fluxes.
Note that the y axis bounds differ by panel.
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(Fig. 3, A and B), but no such signatures are
evident in any of the Southern Ocean aircraft
campaigns (Fig. 2, A and B, and figs. S2, S10,
and S11).
Our analysis demonstrates that Southern

Ocean air-sea fluxes impart a coherent pattern

in atmospheric CO2 as measured by aircraft.
The surface station network is only detectably
sensitive to variations in fluxes during austral
summer and hampered by measurement noise
commensurate with flux signals. Our results
highlight the difficulty global atmospheric in-

versions have in capturingmeaningful estimates
of Southern Ocean fluxes using existing surface
data constraints. It is important to note that a
robust emergent constraint (Fig. 3) requires a
diverse collection of models to avoid results
being affected by biases specific to a singlemodel
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Fig. 3. Emergent constraints on air-sea fluxes south of 45°S. (A and B) 90
day–mean air-sea fluxes south of 45°S versus DqCO2

ocn from model simulations
(see SM) replicating aircraft observations collected during (A) December to
February and (B) March to November. Colored vertical lines show an observed
value of DqCO2 [ORCAS during January in (A) and ATom-1 in (B)] corrected for
land and fossil fuel influence, with shading indicating both analytical uncertainty
and model spread in the correction (see SM); colored points highlight the model
samples from these particular campaigns, while gray points show data from
other campaigns in the (A) December to February or (B) March to November
timeframe. Figures S10 and S11 show similar plots for each individual aircraft
campaign. (C and D) Seasonal-mean surface fluxes versus DyCO2

ocn computed

from models for (C) summer (DJF) and (D) winter (JJA) over the period
1999–2019. Points correspond to individual models; whiskers denote the standard
deviation of interannual variability. Light blue vertical lines show the observed
DyCO2 corrected for land and fossil fuel influence; shading shows analytical
uncertainty and model spread in the correction (see SM; fig. S12, A and B, shows
DyCO2 time series). The sign convention for fluxes is positive upward. Diagonal
lines, where significant, show the best-fit line to all data points shown; inset text
shows an estimate of the slope with standard error (SM), and goodness-of-fit
statistics are also shown. Table S3 provides detailed information on the model
products, defining the acronyms used in the legend. Note that the axis bounds
differ by panel. See fig. S16 for a version of this plot based on total CO2.
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or unidentified transport biases common across
models. The collection of models we included
use four different underlying meteorological
reanalysis datasets, four different transport
models, and differ in spatial resolution and
treatment of vertical transport (table S3); more-
over, they make up a substantial proportion
of the models commonly used for long-term
global CO2 inversions. However, inclusion of
additional model solutions would improve
confidence in our result by increasing the
number of independent realizations of transport.
Despite this potential limitation, aircraft obser-
vations leverage the broad integrative power of

the atmosphere, which provides an advantage
over estimating fluxes from surface ocean
PCO2 observations: The ocean surface is heter-
ogeneous, making representative sampling
difficult; air-sea fluxes computed from PCO2

estimates depend on an uncertain gas ex-
change parameterization (28); and float-based
estimates have additional uncertainty associ-
ated with estimating PCO2 itself (29). However,
we resolved fluxes only over a broadly defined
Southern Ocean region; finer-scale spatial fea-
tures present in surface-ocean PCO2 data can
provide important mechanistic insight, rein-
forcing the need for more high-quality, widely

distributed ocean observations to advance pro-
cessunderstanding.Uncertainty regardingSouth-
ern Ocean carbon uptake is a critical limitation
in current understanding of the global carbon
cycle (30). Our results can be used to validate
Earth system models and inversion-based as-
sessments of the SouthernHemisphere carbon
budget. Critically, integral constraints on the
atmospheric CO2 budget require balanced fluxes;
therefore, our result of strong Southern Ocean
uptake alleviates the need to identify missing
SouthernHemisphere land or subtropical ocean
sinks, as suggested by the float observations.
Finally, our analysis has important implications
for effective monitoring of the Southern Ocean
carbon sink. A regular program of aircraft ob-
servations could provide a cost-effective ap-
proach to drastically improve estimates of the
carbon budget for the Southern Ocean and
globally, helping to fulfill a societal requirement
for clear understanding of mechanisms driving
variation in atmospheric CO2.
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A

B

Fig. 4. Observationally based estimates of Southern Ocean air-sea fluxes. (A) The seasonal cycle
of air-sea CO2 flux south of 45°S estimated from aircraft campaigns (black points, labels), plotted at the
center of the 90-day window for which the emergent flux constraint was calibrated. Whiskers show
the standard deviation derived from propagating analytical and statistical uncertainties; the black line
shows a two-harmonic fit used to estimate the annual mean flux. The colored lines give the seasonal
cycle from atmospheric inversion systems as well as the neural network extrapolation (22) of the Surface
Ocean CO2 Atlas (SOCAT) PCO2 observations (31) and profiling float observations from the Southern
Ocean Carbon and Climate Observations and Modeling (SOCCOM) project (32). Fluxes are averaged over the
period 2009–2018, except for the three neural network–based flux estimates (27) incorporating SOCCOM
observations, which are averaged over the period 2015–2017. (B) Annual mean flux estimated in this
study (leftmost bar) including uncertainty (whisker), along with the mean and standard deviation (whiskers)
across the inversion systems shown in (A) as well as the surface-ocean PCO2-based methods; averaging
time periods are noted in the axis labels (both SOCAT flux estimates were derived using neural network
training over the full observational period). The uncertainty estimate on the SOCAT and SOCCOM fluxes is
approximated from (10), which reported ±0.15 Pg C year−1 as the “method uncertainty” associated with the
neural network–based flux estimates for the whole Southern Ocean (south of 44°S). Note that while
s99oc_v2020 and s99c_SOCAT+SOCCOM_v2020 are global inversions, their ocean fluxes are prescribed,
not optimized using atmospheric observations (see SM); similarly, the CAMS(v20r1) ocean fluxes remain
close to its SOCAT PCO2-based prior.
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Up in the air
Understanding ocean-atmospheric carbon dioxide (CO

2

) fluxes in the Southern Ocean is necessary for quantifying the
global CO

2

 budget, but measurements in the harsh conditions there make collecting good data difficult, so a quantitative
picture still is out of reach. Long et al. present measurements of atmospheric CO

2

 concentrations made by aircraft and
show that the annual net flux of carbon into the ocean south of 45°S is large, with stronger summertime uptake and
less wintertime outgassing than other recent observations have indicated. —HJS
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